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Abstract

A transport class is quite simply a device driver
helper library with an associated sysfs compo-
nent. Although this sounds deceptively simple,
in practise it allows fairly large simplifications
in device driver code. Up until recently, trans-
port classes were restricted to be SCSI only
but now they can be made to apply to any de-
vice driver at all (including ones with no actual
transports).

Subsystems that drive sets of different devices
derive the most utility from transport classes.
SCSI is a really good example of this: We have
a core set of APIs which are needed by ev-
ery SCSI driver (whether Parallel SCSI, Fibre
Channel or something even more exotic) to do
command queueing and interpret status codes.
However, there were a large number of ancil-
lary services which don’t apply to the whole of
SCSI, like Domain Validation for Parallel SCSI
or target disconnection/reconnection for Fibre
Channel. Exposing parameters (like period and
offset, for parallel SCSI) viasysfs gives the
user a well known way to control them with-
out having to develop a core SCSI API. Since a
transport class has only asysfs interface and
a driver API it is completely independent of the
SCSI core. This makes the classes arbitrarily
extensible and imposes no limit on how many
may be simultaneously present.

This paper will examine the evolution of the
transport class in SCSI, covering its current
uses in Parallel SCSI (SPI), Fibre Channel (FC)
and other transports (iSCSI and SAS), contrast-
ing it with previous approaches, like CAM, and
follow with a description of how the concept
was freed from the SCSI subsystem and how it
could be applied in other aspects of kernel de-
velopment, particularly block devices.

1 Introduction

Back in 1986, when the T10 committee first
came out with the Small Computer Systems In-
terconnect (SCSI) protocol, it was designed to
run on a single 8 bit parallel bus. A later proto-
col revision: SCSI-2 [1] was released in 1993
which added the ability to double the bus width
and do synchronous data transfers at speeds up
to 10MHz. Finally, in 1995, the next gener-
ation SCSI-3 architecture [5] was introduced.
This latest standard is a constantly evolving
system which includes different transports (like
serial attached SCSI and Fibre Channel) and
enhances the existing parallel SCSI infrastruc-
ture up to Ultra360.
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2 Overview of SCSI

From its earliest days, SCSI has obeyed a com-
mand model, which means that every device
attached to a SCSI controller has a command
driven state mode; however, this state model
tends to differ radically by device type. This
means that most Operating System’s SCSI sub-
system implementations tend to consist of de-
vice drivers (which understand the device com-
mand model) sitting on top of a more generic
command handling mechanism which under-
stands how to send commands to devices. This
split was also reflected in the first standard for
operating system interfaces to SCSI: CAM [6].

2.1 SCSI CAM

The object of CAM, as the name implies was
to provide a set of common access methods that
would be identical across all operating systems.
Looking at figure 1 one can see how the CAM
infrastructure was laid out.

The CAM four level infrastructure on the left is
shown against the current Linux three level in-
frastructure. The object of the comparison isn’t
to describe the layers in detail but to show that
they map identically at the peripheral driver
layer and then disconnect over the remaining
ones.

Although CAM provided a good model to fol-
low in the SCSI-2 days, it was very definitely
tied to the parallel SCSI transport that SCSI-2
was based on and didn’t address very well the
needs of the new transport infrastructures like
Fibre Channel. There was an attempt to pro-
duce a new specification taking these into ac-
count (CAM-3) but it never actually managed
to produce a specification.
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Figure 1: Illustration of CAM methods with a
comparison to the current Linux SCSI subsys-
tem

2.2 SCSI-3 The Next Generation

From about 1995 onwards, there was a move-
ment to revolutionise the SCSI standard [9].
The basic thrust was a new Architecture Model
(called SAM) whereby the documents were
split up into Peripheral Driver command, a pri-
mary core and transport specific standards. The
basic idea was to unbind SCSI from the con-
cept of a parallel bus and make it much more
extensible in terms of transport architectures.

The actual standard [8] describes the layout as
depicted in figure 2 which compares almost
exactly to the layout of the Linux SCSI sub-
system. Unfortunately, the picture isn’t quite
as rosy as this and there are certain places in
the mid-layer, most notably in error handling,
where we still make transport dependent as-
sumptions.
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Figure 2: SAM-3 with it’s corresponding map-
ping to Linux on the right

3 Linux SCSI Subsystem

From the preceding it can be seen that the orig-
inal SCSI Subsystem didn’t follow either CAM
or SAM exactly (although the implementation
is much closer to SAM). Although the SCSI
mid layer (modulo error handling) is pretty ef-
ficient now in the way it handles commands,
it still lacks fine grained multi-level control of
devices that CAM allows. However, in spite of
this the property users most want to know about
their devices (what is the maximum speed this
device is communicating to the system) was
lacking even from CAM.

3.1 Things Linux Learned from CAM

The basic thing CAM got right was splitting the
lower layers (see figure 1) into XPRT (generic
command transport) SIM (HBA specific pro-
cessing) and HBA (HBA driver) was heading
in the right direction. However, there were sev-
eral basic faults in the design:

1. Even the XPRT which is supposed to be
a generic command transport had knowl-
edge of parallel SCSI specific parameters.

2. The User wasn’t given a prescribed
method for either reading or altering pa-
rameters they’re interested in (like bus
speed).

3. The SIM part allowed for there being one
unique SIM per HBA driver.

Point 3 looks to be an advantage because it al-
lows greater flexibility for controlling groups of
HBAs according to their capabilities. However,
its disadvantage is failing to prescribe precisely
where the dividing line lies (i.e. since it permits
one SIM per HBA, most driver writers wrote
for exactly that, their own unique SIM).

A second issue for Linux is that the XPRT layer
is actually split between the generic block layer
and the SCSI mid-layer. Obviously, other block
drivers are interested in certain features (like
tags and command queueing) whereas some
(like bus scanning or device identification) are
clearly SCSI specific. Thus, the preferred im-
plementation should also split the XPRT into a
block generic and a SCSI specific piece, with
heavy preference on keeping the SCSI specific
piece as small as possible.
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3.2 Recent Evolution

The policy of slimming down SCSI was first
articulated at the Kernel Summit in 2002 [3]
and later refined in 2003 [4]. The idea was to
slim down SCSI as far as possible by moving as
much of its functionality that could be held in
common up to the block layer (the exemplar of
this at the time being tag command queueing).
and to make the mid-layer a small compact
generic command processing layer with plug in
helper libraries to assist the device drivers with
transport and other issues. However, as is the
usual course, things didn’t quite go according
to plan. Another infrastructure was seeping into
SCSI: generic devices andsysfs .

3.3 sysfs

SCSI was the first device driver subsystem to
try to embracesysfs fully. This was done
purely out of selfish reasons: Users were re-
questing extra information which we could ex-
port viasysfs and also, moving to thesysfs
infrastructure promised to greatly facilitate the
Augean scale cleaning task of converting SCSI
to be hotplug compliant. The way this was done
was to embed a generic device into each of the
SCSI device components (host, target and de-
vice) along with defining a special SCSI bus
type to which the ULDs now attach assysfs
drivers.

However, once the initial infrastructure was in
place, with extra additions that allowed drivers
to export special driver specific parameters, it
was noticed that certain vendor requirements
were causing them to push patches into drivers
that were actually exporting information that
was specific to the actual transport rather than
the driver [11].

Since this export of information fitted the gen-
eral pattern of the “helper libraries” described

above, discussion ensued about how best to
achieve this export in a manner that could be
utilised by all drivers acting for the given trans-
port [12]. And thus, the concept of a Transport
Class was born.

4 Transport Classes

The original concept of a transport class was
that it was an entity which attached to the SCSI
device at three levels (host, target and LUN)
and that it exported properties from these de-
vices straight to the user via thesysfs class
interface. A further refinement was that the
transport class (although it had support from
the mid-layer) had no API that it exported to (or
via) the mid layer (this is essential for allowing
HBA’s that aren’t transport class compliant to
continue to operate; however, it also has the ex-
tremely advantageous property of ensuring that
the transport class services aren’t bounded by
any API of the mid-layer and thus makes them
truly extensible). Figure 3 illustrates the rela-
tionships between transport classes and the rest
of the Linux system.

4.1 Implementation

This section describes historical implementa-
tion only, so if you want to know how the
classes function now1 see section 5.3. The
original implementation was designed to export
transport specific parameters, so the code in
the SCSI subsystem was geared around defin-
ing the class and initialising its attribute files at
the correct point in thesysfs tree. However,
once this was done, it was fairly easy to export
an API from the transport class itself that could

1or rather, at the time of writing, which corresponds
to the 2.6.12 kernel
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Figure 3: SCSI transport classes under Linux

make use of these parameters (like Domain Val-
idation for SPI, see below).

The key point was that the interaction between
the mid-layer and the transport class was re-
stricted to the mid-layer providing an API to
get all thesysfs properties initialised and ex-
ported correctly.

4.2 Case Study: the SPI transport Class

SPI means SCSI Parallel Interface and is the
new SCSI-3 terminology for the old parallel
bus. In order to ascertain and control the speed
of the bus, there are three essential characteris-
tics: period, offset and width (plus a large num-
ber of minor characteristics that were added as
the SPI standard evolved).

Once the ability to fetch and set these charac-
teristics had been added, it was natural to add

a domain validation [7] capability to the trans-
port class. What domain validation (DV) does
is to verify that the chosen transport character-
istics match the capability of the SCSI trans-
port by attempting to send and receive a set of
prescribed patterns over the bus from the de-
vice and adjust the transport parameters if the
message is garbled As the parallel bus becomes
faster and faster, this sort of line clearing be-
comes essential since just a small kink in the
cable may produce a large number of errors at
the highest transfer speed.

Since the performance of Domain Validation
depends on nothing more than the setting of
SPI transfer parameters, it is an ideal candidate
service to be performed purely within the SPI
transport class. Although domain validation is
most important in the high speed controllers, it
is still useful to the lower speed ones. Further,
certain high speed controllers themselves con-
tain Domain Validation internally adding code
bloat at best and huge potential for incorrect-
ness at worst (the internal Domain Validation
code has proved to be a significant source of
bugs in certain drivers). As an illustration of the
benefit, the conversion of theaic7xxx driver
to the transport class domain validation resulted
in the removal of 1,700 lines of code [2].

4.3 The Fibre Channel Transport Class

Of all the SCSI transport classes in flux at the
moment, the FC class is doing the most to rev-
olutionise the way the operating system sees
the transport. Following a fairly huge program
of modification, the FC transport class is able
to make use of expanded mid-layer interfaces
to cause even non-SCSI ports of the fabric to
appear under the SCSI device tree—even the
usual SCSI device structure is perturbed since
the tree now appears as host/rport/target/device.

The object of this transport class is twofold:
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1. Consolidate all services for Fibre Chan-
nel devices which can be held in common
(things like cable pull timers, port scan-
ning), thus slimming down the actual Fi-
bre Channel drivers.

2. Implement a consistent API viasysfs
which all drivers make use of, thus in the-
ory meaning a single SAN management
tool can be used regardless of underlying
HBA hardware.

5 Transport Class Evolution

Looking at what’s happening in the SCSI world
today, it’s clear that the next nascent transport
to hit the Linux Kernel will be the Serial At-
tached SCSI (SAS) one. It’s cousin, Serial
ATA (SATA) is already present in both the 2.4
and 2.6 kernels. One of the interesting points
about SAS and SATA is that at the lowest level,
they both share the same bus and packet trans-
port mechanism (the PHY layer, which basi-
cally represent a physical point to point con-
nection which may be only part of a broader
logical point to point connection).

The clear direction here is that SAS should have
two separate transport classes: one for SAS it-
self and one for the PHY, and further that the
PHY transport class (which would control the
physical characteristics of the PHY interface)
should be common between SAS and SATA.

5.1 Multiple Transport Classes per Device

In the old transport class paradigm, each
transport class requires an “anchor” in
the enveloping device structure (for SCSI
we put these intostruct Scsi_Host ,
struct scsi_target and struct
scsi_device ). However, to attach multiple

transport classes under this paradigm, we’d
have to have multiple such anchors in the
enveloping device which is starting to look
rather inefficient.

The basic anchor that is required is a pointer
to the class and also a list of attributes which
appear as files insysfs , so the solution is to
remove the need for this anchor altogether: the
generic attribute container.

5.2 Generic Attribute Containers

The idea here is to dispense entirely with the
necessity for an anchor within some envelop-
ing structure. Instead, all the necessary com-
ponents and attribute files are allocated sepa-
rately and then matched up to the correspond-
ing generic device (which currently always sits
inside the enveloping structure). The mecha-
nism by which attribute containers operate is
firstly by the pre-registration of a structure that
contains three elements:

1. A pointer to the class,

2. a pointer to the set of class device at-
tributes

3. and a match callback which may be coded
to use subsystem specific knowledge to
determine if a given generic device should
have the class associated with it.

Once this is registered, a set of event triggers
on the generic device must be coded into the
subsystem (of necessity, some of these triggers
are device creation and destruction, which are
used to add and remove the container, but addi-
tional triggers of any type whatever may also be
included). The benefit of these triggers is enor-
mous: the trigger function will be called for all
devices to whom the given class is registered,
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so this can be used, for instance, to begin de-
vice configuration. Once the generic attribute
container was in place, it was extremely simple
to build a generic transport class on top of it.

5.3 Generic Transport Classes

Looking at the old SCSI transport classes in the
light of the new attribute containers, it was eas-
ily seen that there are five trigger points:

1. setup (mandatory), where the class device
is created but not yet made visible to the
system.

2. add (mandatory), where the created class
device and its associated attributes are now
made visible insysfs

3. configure (optional), which is possibly
more SCSI-centric; the above two opera-
tions (setup and add) probe the device us-
ing the lowest common transport settings.
Configure means that the device has been
found and identified and is now ready to be
brought up to its maximum capabilities.

4. remove (mandatory), where the class de-
vice should be removed from thesysfs
export preparatory to being destroyed.

5. destroy (mandatory), called on final last
put of the device to cause the attribute con-
tainer to be deallocated.

All of these apart from configure are essen-
tially standard events that all generic devices
go through. Basically then, a generic trans-
port class is a structure containing three of
the five trigger points (add, configure and
remove; setup and destroy being purely in-
ternally concerned with allocation and deal-
location of the transport class, with no ex-
ternal callback visibility). To make use of

the generic transport container, all the sub-
system has to do is to register the struc-
ture with the three callbacks (which is usually
done in the transport class initialisation rou-
tine) and embed the mandatory trigger points
into the subsystem structure creation routines
astransport_ event _device() .

As a demonstration of the utility of the generic
transport class, the entire SCSI transport in-
frastructure was converted over to the generic
transport class code with no loss of functional-
ity and a significant reduction in lines of code
and virtually no alteration (except for initialisa-
tions) within the three existing SCSI transport
classes.

Finally, because the generic transport class
is built upon the generic attribute containers,
which depend only on thesysfs generic de-
vice, any subsystem or driver which has been
converted to use generic devices may also make
use of generic transport classes.

6 So Where Are We Going?

Although the creation of the generic transport
classes was done for fairly selfish reasons (to
get SAS to fit correctly in the transport frame-
work with two attached classes), the potential
utility of a generic transport infrastructure ex-
tends well beyond SCSI.

6.1 IDE and hdparm

As the ATA standards have evolved [10], the
transport speed and feature support (like Tag
Command Queueing) has also been evolving.

Additionally, with the addition of SATA and
AoE (ATA over Ethernet), IDE is evolving in
the same direction that SCSI did many years
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ago (acquiring additional transports), so it be-
gins to make sense to regroup the currently
monolithic IDE subsystem around a core com-
mand subsystem which interacts with multiple
transports.

Currently if you want to see what the transfer
settings of your drive are, you use thehdparm
program, which manipulates those settings via
special ioctls. This same information would
be an ideal candidate for exporting through
sysfs via the generic transport classes.

6.2 Hardware RAID

The kernel today has quite a plethora of hard-
ware RAID drivers; some, likecciss are
present in the block subsystem but the major-
ity are actually presented to the system as SCSI
devices. Almost every one of these has a slew
of special ioctls for configuration, maintenance
and monitoring of the arrays, and almost all of
them comes with their own special packages to
interface to these private ioctls. There has re-
cently been a movement in the standards com-
mittees to unify the management approach (and
even the data format) of RAID arrays, so it
would appear that the time is becoming ripe
for constructing a raid management transport
class that would act as the interface between a
generic management tool and all of the hard-
ware RAID drivers.

6.3 SAS

As has been mentioned before, the need to have
both a SAS and a PHY class for the same device
was one of the driving reasons for the creation
of the generic transport class. We are also hop-
ing that SAS will be the first SCSI transport to
enter the kernel with a fully fledged transport
class system (both SPI and FC had their trans-
port classes grafted on to them after drivers for

each had been accepted into the kernel, and not
all FC or SPI drivers currently make use of the
capabilities afforded by the transport classes).

Hopefully, the vastly improved functionality
provided to FC drivers by the FC transport
class, with the addition of the concept of the
remote port and transport class driven domain
enumeration will at least have convinced the
major SAS protagonists of the benefits of the
approach. However, the current statement of
the SCSI maintainers has been that a working
SAS transport class is a necessary prerequisite
for inclusion of any SAS driver.

6.4 SCSI Error Handling

One of the last major (and incredibly neces-
sary) re-organisations of SCSI involves clean-
ing up the error handler. Currently, the SCSI
error handler is completely monolithic (i.e. it
applies to every driver) and its philosophy of
operation is still deeply rooted in the old paral-
lel bus, which makes it pretty inappropriate for
a large number of modern transports. Clearly,
the error handler should be transport specific,
and thus it would make a natural candidate for
being in a transport class. However, previously
transport classes took services from the mid-
layer but didn’t provide any services to it (the
provide services only to the LLD). However, an
error handler primarily provides services to the
Mid Layer and an API for handling errors to
the LLD, so it doesn’t quite fit in with the origi-
nal vision for the SCSI transport classes. How-
ever, it does seem that it can be made to con-
form more closely with the generic transport
class, where the error handler classes become
separate from the actual “transport” transport
classes.

How this would work is illustrated in figure 4
The arrows represent the concept of “uses the
services of”. The idea essentially is that the
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Figure 4: An Illustration of how the error han-
dlers would work as generic transport classes

error handler classes would be built on the
generic transport classes but would provide a
service to the mid-layer based on a transport
dependent API. The error handler parameters
would, by virtue of thesysfs component, be
accessible to the user to tweak.

7 Conclusions

The SCSI transport classes began life as helper
libraries to slim down the SCSI subsystem.
However, they subsequently became well de-
fined transport class entities and went on to
spawn generic transport classes which have
utility far beyond the scope of the original re-
quirement.

Two basic things remain to be done, though:

1. Retool SCSI error handling to be modular
using generic transport classes.

2. Actually persuade someone outside of the
SCSI subsystem to make use of them.
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