Improving Kernel Performance by Unmapping
the Page Cache

James Bottomley

SteelEye Technology

21 July 2004

Caches and Their Problems

In any computer system, speed of execution depends
on how fast data and instructions can be fetched into
the CPU.

These days, the CPU clock speed is much faster than
the main memory can retrieve data, so caching is
essential.

A cache (in this sense) is a fixed size area of fast
memory either within or close to the CPU where known
values in main memory can be stored for later fast
retrieval.

A writeback cache also takes care of flushing data out
to main memory after a CPU write.

Typical Cache

L1 Cache

!

i

L2 Cache

|

Main Memory

Layout

Diagram shows two
levels of cache.

L1 is internal to the
CPU and L2 is external.

Caches may be either
exclusive (data appears
in one cache only)

or inclusive.

Cache Layout

n

e Cache is composed of
three elements

— Index (corresponding

to location in the
cache)

Actual Data cached.

Tag (additional
information that
ensures what's in the
cache is the data you
were looking for)

Cache Types

e Physically Indexed, Physically Tagged (PIPT)
phyical address: | tag | index

e Virtually Indexed, Physically Tagged (VIPT)
Physical Address: | tag | index;

Virtual Address: indexqy | indexy

e Virtually Indexed, Virtually Tagged (VIVT)

Process id: | tag;

Virtual Address: | tagg

Cache Line Aliasing

Any time the same main memory data appears more
than once in the cache, aliasing is said to have
occurred.

This happens because the same physical page is
mapped into more than one virtual address space.

for VIV T caches, aliasing is impossible to prevent

for VIPT caches, aliasing may be prevented if the
virtual index of the page in the different address spaces
IS the same

— The stride by which two addresses in any virtual
space have the same index is called the congruence
modulus.

Aliasing Illustration

e Same page is mapped
into two different
locations in two different
process address spaces

Physical Address Space

The virtual indices of
the two virtual addresses
are different.

e space vaddr space 2 Every byte in the page
thus appears in two
separate cache lines.

The Problem of Aliasing

Whenever the cache contains aliases, it basically means
there are incoherent copies of identical data.

The incoherency is a property of the caching
architecture.

— PIPT—No aliasing.

— VIP T—Avoidable aliasing

— VIV T—Unavoidable aliasing

If the cache is write back, can get into a situation

where two lines representing the same data are both
dirty

— This is absolutely fatal

Managing the incoherency caused by aliasing is the
responsibility of the Operating System.

DMA and Virtual Indexing

DMA is Direct Memory Access.
This means direct to physical memory address

In PIPT, DMA can participate directly in the caching
process by simply ejecting lines that DMA is done to.

In VI architectures, can’t do this because you don't
know what the virtual index is for a given physical
address.

Have to program a Coherence Index as part of DMA.

T his coherence index can only name one address space
(hence only one of the aliases).

Physical Addressing

In a Virtually Indexed cache any access via a physical
(also called absolute) needs to be coherent

Most CPUs have non-virtual address lookup
requirements (usually in the paging subsystem).

Most caches work around this by treating the physical
address identically to the way it treats virtual addresses
for caching purposes.

however, now means that you can get aliasing between
physical and virtual addresses.

Aliasing in LinuXx

e T he kernel expects operate in the presence of aliasing.

e T here is a complete kernel API for reconciling the
aliases between the various address spaces.

e However look at the operation of this API:

— Device does DMA which is made coherent in kernel
space

— Kernel flushes the aliases to make the DMA
coherent to a user process.

— every DMA must be flushed this way, which is
extremely inefficient

Aliasing in LinuXx

e [he double flush in Virtually Indexed architectures is
expensive and shows up as degredataion of I/O
throughput.

e Eliminating this would provide a significant speed up.
e [here’'s another problem: Some VIPT architectures
require the elimination of aliasing.
— We have a few parisc chipsets that require this

— the most current example is pa8800 which currently
can boot linux but not run for any length of time
without crashing.

Kernel Virtual Addressing

In almost every architecture today, the kernel is offset
mapped

That means that virtual and physical addresses are
related by simple addition:

virtual = physical 4+ __PAGE_OFFSET.

gives automatic resolution of virtual to physical aliases
in VIPT systems.

Makes it very easy to do address conversion

— this is required to move from absolute to virtual
addressing.

— which is necessary for interrupt paths on parisc.

Achieving the Elimination of Aliasing

To eliminate aliasing completely, all of the addresses
must be equal modulo the congruence modulus.

Cannot do this without breaking offset mapping in the
kernel.

This is not a simple exercisel

So, let's explore this.

Users and mmap ()

Linux currently contains a hook to allow architecture
code to intercept and rearrange user process vm areas.

We use this in parisc to ensure all of our user vm areas
begin on the congruence offset boundary

This means that we can ensure that every user mapped
area never has aliasing problems with other user
mapped areas.

Thus, our only problem is the kernel. If we can make
kernel addresses congruent (non-aliased) with any user
address, the whole system will have completely
eliminated aliases.

Zones and the Kernel

ZONE_DMA ZONE_NORMAL ZONE_HIGHMEM

0

OxfFffffff....
Phys Addr

ZONE_DMA is historical

ZONE_NORMAL is ordinarily mapped into kernel space, and
is where all usual kernel allocations come from

ZONE_HIGHMEM is not ordinarily mapped into kernel space
(must use kmap() to access it) and is where all user
process allocations come from.

Kernel Virtual Map

Most of this is taken up with offset mapping of physical
memory

However, there is also a region set aside for vmalloc()

and kmap ().

This region is fixed size; thus the kernel can easily run
out of kmap space (can be a problem on x86).

Obviously, if you are a Virtually Indexed architecture all
your memory (including ZONE_HIGHMEM) must be mapped
into the kernel.

Unmapping Zone Normal

Since zone normal (and zone dma) is the only
permanently mapped zone into the kernel, unmapping
it will immediately make the kernel fully congruent...

However, this would also mean the kernel had no
currently mapped memory.

So the trick is to map the memory on allocation
and unmap it again on release.

doing this, a standard parisc linux has around 10MB all
told mapped in zone normal.

Problems with Virtual to Physical transiation

e Once we no longer use offset mapping, virtual to
physical address translation becomes difficult.

e to find the virtual address from the physical address,
we can use the virtual field of the page structure (not
present unless WANT_PAGE_VIRTUAL is defined).

e to go from virtual to physical, we have to do page table
lookups (expensive).

Begin with Bootmem

In current Linux (on parisc), we populate the bootmem
with every piece of system memory we can find.

After the system has come up far enough to initialise
memory management, we pass all the unused memory
to the usual memory management system via
free_pages()

Thus, we can begin life as a completely offset mapped
system

and then we release the offset mappings as memory
comes back in via free_pages().

Kernel Allocations

Any kernel allocations come via kmalloc().

They can never be __GFP_HIGHMEM

Can be used in structures (like task struct or
pmd/pgd/pte) that may be accessed via physical
address.

Thus, need to be congruent to physical address.

User Allocations

Always allocated from __GFP_HIGHMEM

will automatically be placed congruently to other user
processes.

will not be accessed at all by the kernel without using
kmap ().

Thus, no need to map into the kernel until kmap() at

which point the mapping must be congruent to the
user address.

Unfortunately, I/O and memory freeing disrupts this.

Allocations

All allocations (both user and kernel) come in through
a single entry point:

— __alloc_pages()

Thus we only need a single hook in this routine to do
the map on allocation for the kernel

can tell exactly from the gfp flags whether this is an
allocation for userspace or the kernel.

for userspace, do not know user address when page is
allocated, only when it is put into the user vma, so
need an additional hook.

Determining User Addresses

Sounds easy, but if a given user page has never been
kmap () 'd it will never have a value placed into

page—->virtual.

Problem, because if we free it or do I/O to it, we don't
know what the associated virtual address should be.

This usually isn't known when the page is allocated, so
how do we find it7

Turns out we need to hijack a NUMA hook:
alloc_page_vma() which allocates a page specifially to
be placed at a user address.

Freeing Memory

Should be simple ...

But ... In VIPT, if you free a page but do not flush it
from the cache, if we map the same page at a
congruent address at a later time, it may still have stale
cache lines.

Thus, must flush the page from the cache when it is
freed.

Problem: If this page was a user page, and never
mapped into the kernel, we may not have a valid
mapping when we come to flush it.

Thus, flush it through a temporarily aliased mapping.

Hooks for Freeing Memory

e It turns out that the memory free paths are more
complex than the allocation ones.

e [here are two separate possible free paths
— __free_pages_ok() (for bulk page freeing) and
— __free_hot_cold_page() (for single page freeing).

e have to hook into both of these.

Doing I/O

The final problem is that the linux bio/request system
contains no mechanism for identifying the user process
that requested the 1/0O.

Indeed, each page in a bio may have come from a
different user space.

True solution is probably to add process tagging to
each page in the bio.

However, quick and dirty fix is to kmap() each page (at
a congruent address) as part of the setup of the DMA
operation.

Other wins: fork()/exec()

On parisc, fork/exec has a huge cost, primarily because
we have to flush the entire cache when a process dies

We do this to ensure we don't get stale cache lines on
page reuse.

However, if we are now flushing the pages when they
are freed, we no-longer need to flush the cache at all
for process death.

This is a huge win. Benchmarks show the fork/exec
time to improve by 50%

Conserving TLB space

Every CPU only has a limited amount of TLB space for
mappings (on parisc this is 150—280 slots)

On most CPUs (but not x86) you can conserve this
space by making TLB entries cover larger spaces

— PA has page sizes that go up in powers of 4
since the allocation routine __alloc pages() knows the
order of the allocation, you can hook into this to cover

the region with the largest sized TLB entries you can
manage.

Thus, we can begin using variable sized pages.

Conclusions

e Ease of implementation
— Four hooks in generic code.
— All the rest hidden inside the Architecture Specific
part.

Unintended Consequences.
Began by trying to speed up I/O throughput by
eliminating an unnecessary page flush.

Provided x86 a way to enlarge kmap space

Also got vastly improved fork/exec speed (hence
faster kernel builds)

And finally turns out to be an architectural
requirement for HP's latest chip (pa8800).

e Current State of the Code.

