
Improving Kernel Performance by Unmapping

the Page Cache

James Bottomley

SteelEye Technology

21 July 2004

1

Caches and Their Problems

• In any computer system, speed of execution depends

on how fast data and instructions can be fetched into

the CPU.

• These days, the CPU clock speed is much faster than

the main memory can retrieve data, so caching is

essential.

• A cache (in this sense) is a fixed size area of fast

memory either within or close to the CPU where known

values in main memory can be stored for later fast

retrieval.

• A writeback cache also takes care of flushing data out

to main memory after a CPU write.

2

Typical Cache Layout

L2 Cache

Main Memory

L1 Cache

CPU
• Diagram shows two

levels of cache.

• L1 is internal to the

CPU and L2 is external.

• Caches may be either

exclusive (data appears

in one cache only)

• or inclusive.

3

Cache Layout

Data TagIndex

1

2

n

• Cache is composed of

three elements

– Index (corresponding

to location in the

cache)

– Actual Data cached.

– Tag (additional

information that

ensures what’s in the

cache is the data you

were looking for)

4

Cache Types

• Physically Indexed, Physically Tagged (PIPT)

phyical address: tag index

• Virtually Indexed, Physically Tagged (VIPT)

Physical Address: tag index1

Virtual Address: index0 index1

• Virtually Indexed, Virtually Tagged (VIVT)

Process id: tag1

Virtual Address: tag0 index

5

Cache Line Aliasing

• Any time the same main memory data appears more

than once in the cache, aliasing is said to have

occurred.

• This happens because the same physical page is

mapped into more than one virtual address space.

• for VIVT caches, aliasing is impossible to prevent

• for VIPT caches, aliasing may be prevented if the

virtual index of the page in the different address spaces

is the same

– The stride by which two addresses in any virtual

space have the same index is called the congruence

modulus.

6

Aliasing Illustration

vaddr space 1 vaddr space 2

Physical Address Space

Cache
• Same page is mapped

into two different

locations in two different

process address spaces

• The virtual indices of

the two virtual addresses

are different.

• Every byte in the page

thus appears in two

separate cache lines.

7

The Problem of Aliasing

• Whenever the cache contains aliases, it basically means

there are incoherent copies of identical data.

• The incoherency is a property of the caching

architecture.

– PIPT—No aliasing.

– VIPT—Avoidable aliasing

– VIVT—Unavoidable aliasing

• If the cache is write back, can get into a situation

where two lines representing the same data are both

dirty

– This is absolutely fatal

• Managing the incoherency caused by aliasing is the

responsibility of the Operating System.

8

DMA and Virtual Indexing

• DMA is Direct Memory Access.

• This means direct to physical memory address

• In PIPT, DMA can participate directly in the caching

process by simply ejecting lines that DMA is done to.

• In VI architectures, can’t do this because you don’t

know what the virtual index is for a given physical

address.

• Have to program a Coherence Index as part of DMA.

• This coherence index can only name one address space

(hence only one of the aliases).

9

Physical Addressing

• In a Virtually Indexed cache any access via a physical

(also called absolute) needs to be coherent

• Most CPUs have non-virtual address lookup

requirements (usually in the paging subsystem).

• Most caches work around this by treating the physical

address identically to the way it treats virtual addresses

for caching purposes.

• however, now means that you can get aliasing between

physical and virtual addresses.

10

Aliasing in Linux

• The kernel expects operate in the presence of aliasing.

• There is a complete kernel API for reconciling the

aliases between the various address spaces.

• However look at the operation of this API:

– Device does DMA which is made coherent in kernel

space

– Kernel flushes the aliases to make the DMA

coherent to a user process.

– every DMA must be flushed this way, which is

extremely inefficient

11

Aliasing in Linux

• The double flush in Virtually Indexed architectures is

expensive and shows up as degredataion of I/O

throughput.

• Eliminating this would provide a significant speed up.

• There’s another problem: Some VIPT architectures

require the elimination of aliasing.

– We have a few parisc chipsets that require this

– the most current example is pa8800 which currently

can boot linux but not run for any length of time

without crashing.

12

Kernel Virtual Addressing

• In almost every architecture today, the kernel is offset

mapped

• That means that virtual and physical addresses are

related by simple addition:

virtual = physical + PAGE OFFSET.

• gives automatic resolution of virtual to physical aliases

in VIPT systems.

• Makes it very easy to do address conversion

– this is required to move from absolute to virtual

addressing.

– which is necessary for interrupt paths on parisc.

13

Achieving the Elimination of Aliasing

• To eliminate aliasing completely, all of the addresses

must be equal modulo the congruence modulus.

• Cannot do this without breaking offset mapping in the

kernel.

• This is not a simple exercise!

• So, let’s explore this.

14

Users and mmap()

• Linux currently contains a hook to allow architecture

code to intercept and rearrange user process vm areas.

• We use this in parisc to ensure all of our user vm areas

begin on the congruence offset boundary

• This means that we can ensure that every user mapped

area never has aliasing problems with other user

mapped areas.

• Thus, our only problem is the kernel. If we can make

kernel addresses congruent (non-aliased) with any user

address, the whole system will have completely

eliminated aliases.

15

Zones and the Kernel

ZONE_DMA ZONE_NORMAL ZONE_HIGHMEM

0 0xffffffff....
Phys Addr

• ZONE DMA is historical

• ZONE NORMAL is ordinarily mapped into kernel space, and

is where all usual kernel allocations come from

• ZONE HIGHMEM is not ordinarily mapped into kernel space

(must use kmap() to access it) and is where all user

process allocations come from.

16

Kernel Virtual Map

• Most of this is taken up with offset mapping of physical

memory

• However, there is also a region set aside for vmalloc()

and kmap().

• This region is fixed size; thus the kernel can easily run

out of kmap space (can be a problem on x86).

• Obviously, if you are a Virtually Indexed architecture all

your memory (including ZONE HIGHMEM) must be mapped

into the kernel.

17

Unmapping Zone Normal

• Since zone normal (and zone dma) is the only

permanently mapped zone into the kernel, unmapping

it will immediately make the kernel fully congruent...

• However, this would also mean the kernel had no

currently mapped memory.

• So the trick is to map the memory on allocation

• and unmap it again on release.

• doing this, a standard parisc linux has around 10MB all

told mapped in zone normal.

18

Problems with Virtual to Physical translation

• Once we no longer use offset mapping, virtual to

physical address translation becomes difficult.

• to find the virtual address from the physical address,

we can use the virtual field of the page structure (not

present unless WANT PAGE VIRTUAL is defined).

• to go from virtual to physical, we have to do page table

lookups (expensive).

19

Begin with Bootmem

• In current Linux (on parisc), we populate the bootmem

with every piece of system memory we can find.

• After the system has come up far enough to initialise

memory management, we pass all the unused memory

to the usual memory management system via

free pages()

• Thus, we can begin life as a completely offset mapped

system

• and then we release the offset mappings as memory

comes back in via free pages().

20

Kernel Allocations

• Any kernel allocations come via kmalloc().

• They can never be GFP HIGHMEM

• Can be used in structures (like task struct or

pmd/pgd/pte) that may be accessed via physical

address.

• Thus, need to be congruent to physical address.

21

User Allocations

• Always allocated from GFP HIGHMEM

• will automatically be placed congruently to other user

processes.

• will not be accessed at all by the kernel without using

kmap().

• Thus, no need to map into the kernel until kmap() at

which point the mapping must be congruent to the

user address.

• Unfortunately, I/O and memory freeing disrupts this.

22

Allocations

• All allocations (both user and kernel) come in through

a single entry point:

– alloc pages()

• Thus we only need a single hook in this routine to do

the map on allocation for the kernel

• can tell exactly from the gfp flags whether this is an

allocation for userspace or the kernel.

• for userspace, do not know user address when page is

allocated, only when it is put into the user vma, so

need an additional hook.

23

Determining User Addresses

• Sounds easy, but if a given user page has never been

kmap()’d it will never have a value placed into

page->virtual.

• Problem, because if we free it or do I/O to it, we don’t

know what the associated virtual address should be.

• This usually isn’t known when the page is allocated, so

how do we find it?

• Turns out we need to hijack a NUMA hook:

alloc page vma() which allocates a page specifially to

be placed at a user address.

24

Freeing Memory

• Should be simple ...

• But ... In VIPT, if you free a page but do not flush it

from the cache, if we map the same page at a

congruent address at a later time, it may still have stale

cache lines.

• Thus, must flush the page from the cache when it is

freed.

• Problem: If this page was a user page, and never

mapped into the kernel, we may not have a valid

mapping when we come to flush it.

• Thus, flush it through a temporarily aliased mapping.

25

Hooks for Freeing Memory

• It turns out that the memory free paths are more

complex than the allocation ones.

• There are two separate possible free paths

– free pages ok() (for bulk page freeing) and

– free hot cold page() (for single page freeing).

• have to hook into both of these.

26

Doing I/O

• The final problem is that the linux bio/request system

contains no mechanism for identifying the user process

that requested the I/O.

• Indeed, each page in a bio may have come from a

different user space.

• True solution is probably to add process tagging to

each page in the bio.

• However, quick and dirty fix is to kmap() each page (at

a congruent address) as part of the setup of the DMA

operation.

27

Other wins: fork()/exec()

• On parisc, fork/exec has a huge cost, primarily because

we have to flush the entire cache when a process dies

• We do this to ensure we don’t get stale cache lines on

page reuse.

• However, if we are now flushing the pages when they

are freed, we no-longer need to flush the cache at all

for process death.

• This is a huge win. Benchmarks show the fork/exec

time to improve by 50%

28

Conserving TLB space

• Every CPU only has a limited amount of TLB space for

mappings (on parisc this is 150–280 slots)

• On most CPUs (but not x86) you can conserve this

space by making TLB entries cover larger spaces

– PA has page sizes that go up in powers of 4

• since the allocation routine alloc pages() knows the

order of the allocation, you can hook into this to cover

the region with the largest sized TLB entries you can

manage.

• Thus, we can begin using variable sized pages.

29

Conclusions

• Ease of implementation

– Four hooks in generic code.

– All the rest hidden inside the Architecture Specific

part.

• Unintended Consequences.

– Began by trying to speed up I/O throughput by

eliminating an unnecessary page flush.

– Provided x86 a way to enlarge kmap space

– Also got vastly improved fork/exec speed (hence

faster kernel builds)

– And finally turns out to be an architectural

requirement for HP’s latest chip (pa8800).

• Current State of the Code.

30

