
Integrating DMA Into the Generic Device Model

James E.J. Bottomley
SteelEye Technology, Inc.

http://www.steeleye.com

James.Bottomley@steeleye.com

Abstract

This paper will introduce the new DMA API for the
generic device model, illustrating how it works and ex-
plaining the enhancements over the previous DMA Map-
ping API. In a later section we will explain (using illus-
trations from the PA-RISC platform) how conversion to
the new API may be achieved hand in hand with a com-
plete implementation of the generic device API for that
platform.

1 Introduction

Back in 2001, a group of people working on non-x86
architectures first began discussing radical changes to
the way device drivers make use of DMA. The essence
of the proposal was to mandate a new DMA Mapping
API[1] which would be portable to all architectures then
supported by Linux. One of the forces driving the adop-
tion of this new API was the fact that the PCI bus had ex-
panded beyond the x86 architecture and being embraced
by non-x86 hardware manufacturers. Thus, one of the
goals was that any driver using the DMA Mapping API
should work onany PCI bus independent of the under-
lying microprocessor architecture. Therefore, the API
was phrased entirely in terms of the PCI bus, since PCI
driver compatibility across architectures was viewed as
a desirable end result.

1.1 Legacy Issues

One of the issues left unaddressed by the DMA Map-
ping API was that of legacy buses: Most non-x86 archi-
tectures had developed other bus types prior to the adop-
tion of PCI (e.g. sbus for the sparc; lasi and gsc bus for
PA-RISC) which were usually still present in PCI based
machines. Further, there were other buses that migrated

across architectures prior to PCI, the most prominent be-
ing EISA. Finally, some manufacturers of I/O chips de-
signed them not to be bus based (the LSI 53c7xx series
of SCSI chips being a good example). These chips made
an appearance in an astonishing variety of cards with an
equal variety of bus interconnects.

The major headache for people who write drivers for
non-PCI or multiple bus devices is that there was no
standard for non-PCI based DMA, even though many of
the problems encountered were addressed by the DMA
Mapping API. This gave rise to a whole hotchpotch of
solutions that differed from architecture to architecture:
On Sparc, the DMA Mapping API has a completely
equivalent SBUS API; on PA-RISC, one may obtain a
“fake” PCI object for a device residing on a non-PCI bus
which may be passed straight into the PCI based DMA
API.

1.2 The Solution

The solution was to re-implement the DMA Mapping
API to be non bus specific. This goal was vastly facil-
itated by the new generic device architecture[5] which
was also being implemented in the 2.5 Linux kernel and
which finally permitted the complete description of de-
vice and bus interconnections using a generic template.

1.3 Why A New API

After all, apart from legacy buses, PCI is the one bus to
replace all others, right? so an API based on it must be
universally applicable?

This is incorrect on two counts. Firstly, support for
legacy devices and buses is important to Linux, since
being able to boot on older hardware that may have no
further use encourages others who would not otherwise
try Linux to play with it, and secondly there are other

new non-PCI buses support for which is currently being
implemented (like USB and firewire).

1.4 Layout

This paper will describe the problems caused by CPU
caches in section 2, move on to introducing new struct
device based DMA API[2] in section 3 and describe
how it solves the problems, and finally in section 4 de-
scribe how the new API may be implemented by plat-
form maintainers giving specific examples from the PA-
RISC conversion to the new API.

2 Problems Caused By DMA

The definition of DMA: Direct Memory Access means
exactly that: direct access to memory (without the aid
of the CPU) by a device transferring data. Although the
concept sounds simple, it is fraught with problems in-
duced by the way a CPU interacts with memory.

2.1 Virtual Address Translation

Almost every complex CPU designed for modern Oper-
ating Systems does some form of Virtual Address Trans-
lation. This translation, which is usually done inside the
CPU, means that every task running on that CPU may
utilise memory as though it were the only such task. The
CPU transparently assigns each task overlapping mem-
ory in virtual space, but quietly maps it to unique loca-
tions in the physical address space (the memory address
appearing on the bus) using an integral component called
a MMU (Memory Management Unit).

Unfortunately for driver writers, since DMA transfers
occur without CPU intervention, when a device transfers
data directly to or from memory, it must use the physi-
cal memory address (because the CPU isn’t available to
translate any virtual addresses). This problem isn’t new,
and was solved on the x86 by using functions which per-
formed the same lookups as the CPU’s MMU and could
translate virtual to physical addresses and vice versa so
that the driver could give the correct addresses physical
addresses to the hardware and interpret any addresses re-
turned by the hardware device back into the CPU’s vir-
tual space.

However, the problems don’t end there. With the advent
of 64 bit chips it became apparent that they would still
have to provide support for the older 32 bit (and even 24
bit) I/O buses for a while. Rather than cause inconve-
nience to driver writers by arbitrarily limiting the physi-
cal memory addresses to which DMA transfers could be
done, some of the platform manufacturers came up with
another solution: Add an additional MMU between the
I/O buses and the processor buses (This MMU is usually
called the IOMMU). Now the physical address limita-
tion of the older 32 bit buses can be hidden because the
IOMMU can be programmed to map the physical ad-
dress space of the bus to anywhere in thephysical
(not virtual) memory of the platform. The disadvantage
to this approach is that now this bus physical to memory
physical address mapping must be programmed into the
IOMMU and must also be managed by the device driver.

There may even be multiple IOMMUs in the system, so
a physical address (mapped by a particular IOMMU)
given to a device might not even be unique (another
device may use the same bus address via a different
IOMMU).

2.2 Caching

On most modern architectures, the speed of the proces-
sor vastly exceeds the speed of the available memory (or,
rather, it would be phenomenally expensive to use mem-
ory matched to the speed of the CPU). Thus, almost all
CPUs come equipped with a cache (called the Level 1
[L1] cache). In addition, they usually expose logic to
drive a larger external cache (called the Level 2 [L2]
cache).

In order to simplify cache management, most caches op-
erate at a minimum size called the cache width1. All
reads and writes from main memory to the cache must
occur in integer multiples of the cache width. A com-
mon value for the cache width is sixteen bytes; however,
higher (and sometimes for embedded processors, lower)
values are also known.

The effect of the processor cache on DMA can be ex-
tremely subtle. For example, consider a hypothetical
processor with a cache width of sixteen bytes. Referring
to figure 1, supposing I read a byte of data at address
0x18 . Because of the cache burst requirement, this will
bring the address range0x10 to 0x1f into the cache.
Thus, any subsequent read of say0x11 will be satis-
fied from the cache without any reference to main mem-

1also called the “cache line size” in the PCI specification

Cache Line Width

0x00

0x20

0x10 dataDMA
data

DMA

0x00

0x20

0x10 dataDMA
data

DMA

0x00

0x20

0x10 data
data

new DMA
new DMA

CPU Cache DMA

CPU Cache DMA

T
im

e L
in

e

Device does DMA to main memory

CPU Reads data at 0x18

data

data

Read from 0x11 satisfied from cached data

Figure 1: Incorrect data read because of cache effects

ory. Unfortunately, If I am reading from0x11 because
I programmed a device to deposit data there via DMA,
the value that I read will not be the value that the device
placed in main memory because the CPU believes the
data in the cache to be still current. Thus I read incorrect
data.

Worse, referring to figure 2, supposing I have designated
the region0x00 to 0x17 for DMA from a device, but
then I write a byte of data to0x19 . The CPU will prob-
ably modify the data in cache and mark the cache line
0x10 to 0x1f dirty, but not write its contents to main
memory. Now, supposing the device writes data into
0x00 to 0x17 by DMA (the cache still is not aware of
this). However, subsequently the CPU decides to flush
the dirty cache line from0x10 to 0x1f . This flush will
overwrite (and thus destroy) part of the the data that was
placed at0x10 to 0x17 by the DMA from the device.

The above is only illustrative of some of the problems.
There are obviously many other scenarios where cache
interference effects may corrupt DMA data transfers.

2.3 Cache Coherency

In order to avoid the catastrophic consequences of
caching on DMA data, certain processors exhibit a prop-

Cache Line Width

0x00

0x20

0x10 dataDMA
data

DMA

0x00

0x20

0x10 dataDMA
data

DMA

0x00

0x20

0x10 data
data

new DMA
new DMA

0x00

0x20

0x10 DMA
data

new DMA

CPU Cache DMA

CPU Cache DMA new data

new data

new data

T
im

e L
in

e

CPU Writes data at 0x18

Device does DMA to main memory

CPU flushes the dirty cache line

Figure 2: Data destruction by interfering device and
cache line writes

erty called “coherency”. This means that they take ac-
tion to ensure that data in the CPU cache and data in
main memory is identical (usually this is done by snoop-
ing DMA transactions on the memory bus and taking
corrective cache action before a problem is caused).

Even if a CPU isn’t fully coherent, it can usually des-
ignate ranges of memory to be coherent (in the sim-
plest case by marking the memory as uncacheable by the
CPU). Such architectures are called “partially coherent”.

Finally there is a tiny subset of CPUs that cannot be
made coherent by any means, and thus the driver itself
must manage the cache so as to avoid the unfortunate
problems described in section 2.2.

2.4 Cache Management Instructions

Every CPU that is not fully coherent includes cache
management instructions in its repertoire. Although the
actual instruction format varies, they usually operate at
the level of the cache line and they usually perform one
of three operations:

1. Writeback (or flush): causes the cache line to be
synced back to main memory (however, the data in
the cache remains valid).

2. Invalidate: causes the cache line to be eliminated
from the cache (often for a dirty cache line this will
cause the contents to be erased). When the cpu next
references data in that cache line it will be brought
in fresh from main memory.

3. Writeback and Invalidate: causes an atomic se-
quence of Writeback followed by Invalidate (on
some architectures, this is the only form of cache
manipulation instruction implemented).

When DMA is done to or from memory that is not coher-
ent, the above instructions must be used to avoid prob-
lems with the CPU cache. The DMA API contains an
abstraction which facilitates this.

2.5 Other Caches

Although the DMA APIs (both the PCI and generic
device ones) are concernedexclusivelywith the CPU
cache, there may be other caches in the I/O system
which a driver may need to manage. The most obvi-
ous one is on the I/O bus: Buses, like PCI, may possess
a cache which they use to consolidate incoming writes.
Such behaviour is termed “posting”. Since there are no
cache management instructions that can be used to con-
trol the PCI cache (the cache management instructions
only work with the CPU cache), the PCI cache employs
special posting rules to allow driver writers to control its
behaviour. The rules are essentially:

1. Caching will not occur on I/O mapped spaces.

2. The sequence of reads and writes to the mem-
ory mapped space will be preserved (although the
cache may consolidate write operations).

One important point to note is that there is no defined
time limit to hold writes in the bus cache, so if you want
a write to be seen by the device it must be followed by a
read.

Suffice it to say that the DMA API does not address PCI
posting in any form. The basic reason is that in order to
flush a write from the cache, a read of somewhere in the
device’s memory space would have to be done, but only
the device (and its driver) know what areas are safe to
read.

3 The New DMA API for Driver Writers

By “driver writer”, we mean any person who wishes to
use the API to manage DMA coherency without want-
ing to worry about the underlying bus (and architecture)
implementation.

This part of the API and its relation to the PCI DMA
Mapping API is fairly well described in [2] and also in
other published articles [3].

3.1 DMA Masks, Bouncing and IOMMUs

Every device has a particular attachment to a bus. For
most, this manifests itself in the number of address lines
on the bus that the device is connected to. For example,
old ISA type buses were only connected (directly) to the
first twenty four address lines. Thus they could only di-
rectly access the first sixteen megabytes of memory. If
you needed to do I/O to an address greater than this, the
transfer had to go via a bounce buffer: e.g. data was re-
ceived into a buffer guaranteed to be lower than sixteen
megabytes and then copied into the correct place. This
distinction is the reason why Linux reserves a special
memory zone for legacy (24 bit) DMA which may be
accessed using flag (GFP_DMA) or’d into the allocation
flags.

Similarly, a 32 bit PCI bus can only access up to the first
four gigabytes of main memory (and even on a 64 bit
PCI bus, the device may be only physically connected to
the first 32 or 24 address lines).

Thus, the concept of adma maskis used to convey this
information. The API for setting the dma mask is:

int dma_set_mask(struct device
*dev, u64 mask)

• dev —a pointer to the generic device.

• mask—a representation of the bus connection. It
is a bitmap where a 1 means the line is connected
and a zero means it isn’t. Thus, if the device is only
connected to the first 24 lines, themask will be
0xffffff .

• returns true if the bus accepted the mask.

Note also that if you are driving a device capable of ad-
dressing up to 64 bits, you must also be aware that the

bus it is attached to may not support this (i.e. you may
be a 64 bit PCI card in a 32 bit slot). So when setting the
DMA mask, you must start with the value you want but
be prepared that you may get a failure because it isn’t
supported by the bus. For 64 bit devices, the convention
is to try 64 bits first but if that fails set the mask to 32
bits.

Once you have set the DMA mask, the troubles aren’t
ended. If you need transfers to or from memory outside
of your DMA mask to be bounced, you must tell the
block2 layer using the

void blk_queue_bounce_limit (re-
quest_queue_t *q, u64 mask)

• q—the request queue your driver is connected to.

• mask—the mask (again 1s for connected ad-
dresses) that an I/O transfer will be bounced if
it falls outside of (i.e. address & mask !=
address)

function that it should take care of the bouncing. Note,
however, that bouncingonly needs to occur for buses
without an IOMMU. For buses with an IOMMU, the
mask serves only as an indication to the IOMMU of what
the range of physical addresses available to the device is.
The IOMMU is assumed to be able to address the full
width of the memory bus and therefore transfers to the
device need not be bounced by the block layer.

Thus, the driver writer must know whether the bus is
mapped through an IOMMU or not. The means for do-
ing this is to test the globalPCI_DMA_BUS_IS_PHYS
macro. If it is true, the system generally has no
IOMMU3 and you should feed the mask into the block
bounce limit. If it is false, then you should supply
BLK_BOUNCE_ANY(informing the block layer that no
bouncing is required).

3.2 Managing block layer DMA transfers

It is the responsibility of the device driver writer to man-
age the coherency problems in the CPU cache when
transferring data to or from a device and also mapping

2Character and Network devices have their own ways of doing
bouncing, but we will consider only the block layer in the following

3this is an inherent weakness of the macro. Obviously, it is possible
to build a system where some buses go via an IOMMU and some do
not. In a future revision of the DMA API, this may be made a device
specific macro

between the CPU virtual address and the device physi-
cal address (including programming the IOMMU if such
is required).

By and large, most block devices are simply transports:
they move data from user applications to and from stor-
age without much concern for the actual contents of the
data. Thus they can generally rely on the CPU cache
management implicit in the APIs for DMA setup and
tear-down. They only need to use explicit cache man-
agement operations if they actually wish to access the
data they are transferring. The use of device private ar-
eas for status and messaging is covered in sections 3.5
and 3.6.

For setup of a singlephysically contiguous4 DMA re-
gion, the function is

dma_addr_t dma_map_single (struct
device *dev, void *ptr, size_t
size, enum dma_data_direction di-
rection)

• ptr —pointer to the physically contiguous data
(virtual address)

• size –the size of the physically contiguous region

• direction —the direction, either to the device,
from the device or bidirectional (see section 3.4 for
a complete description)

• returns a bus physical address which may be passed
to the device as the location for the transfer

and the corresponding tear-down after the transfer is
complete is achieved via

void dma_unmap_single (struct
device *dev, dma_addr_t
dma_addr, size_t size, enum
dma_data_direction direction)

• dma_addr —the physical address returned by the
mapping setup function

• size , direction —the exact values passed into
the corresponding mapping setup function

4physically contiguous regions of memory for DMA can be ob-
tained fromkmalloc() and__get_free_pages() . They may
specificallynotbe allocated on the stack (because data destruction may
be caused by overlapping cache lines, see section 2.2) orvmalloc()

The setup and tear-down functions also take care of all
the necessary cache flushes associated with the DMA
transaction5.

3.3 Scatter-Gather Transfers

By and large, almost any transfer that crosses a page
boundary will not be contiguous in physical memory
space (because each contiguous page in virtual memory
may be mapped to a non-contiguous page in physical
memory) and thus may not be mapped using the API of
section 3.2. However, the block layer can construct a list
of each separate page and length in the transfer. Such
a list is called a Scatter-Gather (SG) list. The device
driver writer must map each element of the block layer’s
SG list into a device physical address.

The API to set up a SG transfer for a givenstruct
request *req is

int blk_rq_map_sg (request_queue_t
*q, struct request *req, struct
scatterlist *sg)

• q—the queue the request belongs to

• sg —a pointer to a pre allocated physi-
cal scatterlist which must be at leastreq-
>nr_phys_segments in size.

• returns the number of entries insg which were ac-
tually used

Once this is done, the SG list may be mapped for use by
the device:

int dma_map_sg(struct device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction direction)

• sg —a pointer to a physical scatterlist which was
filled in by

• nents —the allocated size of the SG list.

• direction —as per the API in section 3.2

• returns the number of entries of thesg list actu-
ally used. This value must be less than or equal to

5they use thedirection parameter to get this right, so be careful
when assigning directions to ensure that they are correct

nents but is otherwise not constrained (if the sys-
tem has an IOMMU, it may chose to do all SG in-
side the IOMMU mappings and thus always return
just a single entry).

• returns zero if the mapping failed.

Once you have mapped the SG list, you may loop over
the number of entries using the following macros to ex-
tract the busy physical addresses and lengths

dma_addr_t sg_dma_address (struct
scatterlist *sge)

• sge –pointer to the desired entry in the SG list

• returns the busy physical DMA address for the
given SG entry

unsigned int sg_dma_len (struct
scatterlist *sge)

• returns the length of the given SG entry

and program them into the device’s SG hardware con-
troller. Once the SG transfer has completed, it may be
torn down with

void dma_unmap_sg (struct device
*dev, struct scatterlist *sg, int
nents, enum dma_data_direction
direction)

• nents should be the number of entries passed in
to dma_map_sg() not the number of entries re-
turned.

3.4 Accessing the Data Between Mapping and
Unmapping

Since the cache coherency is normally managed by the
mapping and unmapping API, you may not access the
data between the map and unmap without first synchro-
nizing the CPU caches. This is done using the DMA
synchronization API. The first

void dma_sync_single(struct
device *dev, dma_addr_t
dma_handle, size_t size, enum
dma_data_direction direction)

• dma_handle —the physical address of the region
obtained by the mapping function.

• size —The size of the region passed into the map-
ping function.

synchronizes only areas mapped by the
dma_map_single API, and thus only works for
physically contiguous areas of memory. The other

void dma_sync_sg (struct device
*dev, struct scatterlist *sg, int
nelems, enum dma_data_direction
direction)

• The parameters should be identical to those passed
in to dma_map_sg

synchronizes completely a given SG list (and is, there-
fore, rather an expensive operation). The correct point
in the driver code to invoke these APIs depends on the
direction parameter:

• DMA_TO_DEVICE—Usually flushes the CPU
cache. Must be calledafteryou last modify the data
andbeforethe device begins using it.

• DMA_FROM_DEVICE—Usually invalidates the
CPU cache. Must be calledafter the device has fin-
ished transferring the data andbeforeyou first try
to read it.

• DMA_BIDIRECTIONAL—Usually does a write-
back/invalidate of the CPU cache. Must be called
bothafter you finish writing it but before you hand
the data to the deviceand after the device finishes
with it but before you read it.

3.5 API for coherent and partially coherent ar-
chitectures

Most devices require a control structure (or a set of con-
trol structures), to facilitate communication between the
device and its driver. For the driver and its device to op-
erate correctly on an arbitrary platform, the driver would
have to insert the correct cache flushing and invalidate
instructions when exchanging data using this.

However, almost every modern platform has the ability
to designate an area of memory as coherent between the

processor and the I/O device. Using such a coherent
area, the driver writer doesn’t have to worry about syn-
chronising the memory. The API for obtaining such an
area is

void * dma_alloc_coherent
(struct device *dev, size_t size,
dma_addr_t *dma_handle, int flag)

• dev —a pointer to the generic device

• size —requested size of the area

• dma_handle —a pointer to the area the physi-
cally usable address will be placed (i.e. this should
be the address given to the device for the area)

• flag —a memory allocation flag. Either
GFP_KERNEL if the allocation may sleep
while finding memory orGFP_ATOMICif the
allocation may not sleep

• returns the virtual address of the area orNULLif no
coherent memory could be allocated

Note that coherent memory may be a constrained sys-
tem resource and thusNULL may be returned even for
GFP_KERNELallocations.

It should also be noted that the tricks platforms use to
obtain coherent memory may be quite expensive, so it
is better to minimize the allocation and freeing of these
areas where possible.

Usually, device drivers allocate coherent memory at start
of day, both for the above reason and so an in-flight
transaction will not run into difficulties because the sys-
tem is out of coherent memory.

The corresponding API for releasing the coherent mem-
ory is

void dma_free_coherent (struct
device *dev, size_t size, void
*vaddr, dma_addr_t dma_handle)

• vaddr —the virtual address returned by
dma_alloc_coherent

• dma_handle —the device physical address filled
in at allocation time

3.6 API for fully incoherent architectures

This part of the API has no correspondance with any
piece of the old DMA Mapping API. Some platforms
(fortunately usually only older ones) are incapable of
producing any coherent memory at all. Even worse,
drivers which may be required to operate on these plat-
forms usually tend to have to also operate on platforms
which can produce coherent memory (and which may
operate more efficiently if it were used). In the old API,
this meant it was necessary to try to allocate coherent
memory, and if that failed allocate and map ordinary
memory. If ordinary memory is used, the driver must
remember that it also needs to enforce the sync points.
This leads to driver code which looks like

memory = pci_alloc_coherent(...);
if (!memory) {

dev->memory_is_not_coherent = 1;
memory = kmalloc(...);
if (!memory)

goto fail;
pci_map_single(...);

}

....

if (dev->memory_is_not_coherent)
pci_dma_sync_single(...);

Which cannot be optimized away. The noncoherent al-
location additions are designed to make this code more
efficient, and to be optimized away at compile time on
platforms that can allocate coherent memory.

void *dma_alloc_noncoherent
(struct device *dev, size_t size,
dma_addr_t *dma_handle, int flag)

• the parameters are identical to those of
dma_alloc_coherent in section 3.5.

The difference here is that the drivermustuse a special
synchronization API6 to synchronize this area between
data transfers

6The driver could also use the API of section 3.4, but the point of
having a separate one is that it may be optimized away on platforms
that are partially non-coherent

dma_cache_sync (void
*vaddr, size_t size, enum
dma_data_direction direction)

• vaddr —the virtual address of the memory to sync
(this need not be at the beginning of the allocated
region)

• size —the size of the region to sync (again, this
may be less than the allocated size)

• direction —see section 3.4 for a discussion of
how to use this.

Note that the placement of these synchronization points
should be exactly as described in section 3.4. The
platform implementation will choose whether coherent
memory is actually returned. However, if coherent mem-
ory is returned, the implementation will take care of
making sure the synchronizations become nops (on a
fully coherent platform, the synchronizations will com-
pile away to nothing).

Using this API, the above driver example becomes

memory = dma_alloc_noncoherent(...);
if (!memory)

goto fail;

...

dma_cache_sync(...);

The (possibly) non-coherent memory area is freed using

void dma_free_noncoherent(struct
device *dev, size_t size, void
*vaddr, dma_addr_t dma_handle)

• The parameters are identical to those of
dma_free_coherent in section 3.4

Since there are very few drivers that need to function on
fully non-coherent platforms, this API is of little use in
modern systems.

3.7 Other Extensions in the New API

There are two other extensions over the old DMA Map-
ping API. They are

int dma_get_cache_alignment (void)

• returns the cache alignment width of the platform
(see section 2.2). Note, the value returned guaran-
tees only to be a power of two and greater than or
equal to the current processor cache width. Thus
its value may be relied on to separate data variables
where I/O caching effects would destroy data.

int dma_is_consistent (dma_addr_t
dma_handle)

• returns true if the physical memory area at
dma_handle is coherent

And

void dma_sync_single_range(struct
device *dev, dma_addr_t
dma_handle, unsigned long
offset, size_t size, enum
dma_data_direction direction)

• offset —the offset from thedma_handle

• size —the size of the region to be synchronized

which allows a partial synchronization of a mapped re-
gion. This is useful because on most CPUs, the cost of
doing a synchronization is directly proportional to the
size of the region. Using this API allows the synchro-
nization to be restricted only to the necessary parts of
the data.

4 Implementing the DMA API for a Plat-
form

In this section we will explore how the DMA API should
be implemented from a platform maintainer’s point of
view. Since implementation is highly platform specific,
we will concentrate on how the implementation was
done for the HP PA-RISC[4] platform.

4.1 Brief Overview of PA-RISC

An abridged version of a specific PA-RISC architecture7

is given in figure 3. It is particularly instructive to note

7The illustration is actually from a C360 machine, and does not
show every bus in the machine

CPU

U2/Uturn
IOMMU

Cujo

PCI64

Dino Wax Lasi

EISA LASIPCI32

IOMMU
U2/Uturn

Memory

GSC/10 GSC/8

Runway

Figure 3: An abridged example of PA-RISC architecture

that the actual chips involved (Cujo, U2/Uturn, Wax etc.)
vary from machine to machine, as do the physical bus
connections, so the first step that was required for PA-
RISC was to build a complete model of the device lay-
out from the runway bus on down in the generic device
model[5].

4.2 Converting to the Device Model

Since PA-RISC already had its own device type
(struct parisc_device), it was fairly simple to
embed a generic device in this, assign it to a new
parisc_bus_type and build up the correct de-
vice structure. For brevity, instead of giving all the
PA-RISC specific buses (like Lasi, GSC, etc) their
own bus type, they were all simply assigned to the
parisc_bus_type .

The next problem was that of attaching the PCI bus. Pre-
viously, PCI buses could only have other PCI buses as
parents, so a new API8 was introduced to allow parent-
ing a PCI bus to an arbitrary generic device. At the same
time, others were working on bringing the EISA bus un-
der the generic device umbrella [6].

With all these core and architecture specific changes,
PA-RISC now has a complete generic device model lay-
out of all of its I/O components and is ready for full con-
version to the new DMA API.

8pci_scan_bus_parented()

4.3 Converting to the DMA API

Previously for PA-RISC, the U2/Uturn (IOMMU) infor-
mation was cached in the PCI devicesysdata field
and was placed there at bus scan time. Since the bus
scanning was done from the PA-RISC specific code, it
knew which IOMMU the bus was connected to. Un-
fortunately, this scheme doesn’t work for any other bus
type, so an API9 was introduced to obtain a fake PCI de-
vice for a givenparisc_device and place the correct
IOMMU in the sysdata field. PA-RISC actually has
an architecture switch (seestruct hppa_dma_ops
in asm-parisc/dma-mapping.h) for the DMA
functions. All the DMA functions really need to know
is which IOMMU the device is connected to and the de-
vice’s dma_mask, making conversion quite easy since
the only PCI specific piece was extracting the IOMMU
data.

Obviously, in the generic device model, the field
platform_data is the one that we can use for
caching the IOMMU information. Unfortunately there
is no code in any of the scanned buses to allow
this to be populated at scan time. The alternative
scheme we implemented was to take the generic de-
vice passed into the DMA operations switch and, if
platform_data was NULL, walk up theparent
fields until the IOMMU was found, at which point it
was cached in theplatform_data field. Since this
will now work for every device that has a generic device
(which is now every device in the PA-RISC system), the
fake PCI device scheme can be eliminated, and we have
a fully implemented DMA API.

4.4 The Last Wrinkle—Non-Coherency

There are particular PA-RISC chips (the PCX-S and
PCX-T) which are incapable of allocating any coherent
memory at all. Fortunately, none of these chips was
placed into a modern system,or indeed into a system
with an IOMMU, so all the buses are directly connected.

Thus, an extra pair of functions was added to the DMA
API switch for this platform which implemented non-
coherent allocations as akmalloc() followed by a
map, and also for thedma_cache_sync() API. On
the platforms that are able to allocate coherent memory,
the noncoherent allocator is simply the coherent one, and
the cache sync API is a nop.

9ccio_get_fake()

5 Future Directions

The new DMA API has been successful on platforms
that need to unify the DMA view of disparate buses.
However, the API as designed is really driver writer di-
rect to platform. There are buses (USB being a prime
example) which would like to place hooks to intercept
the DMA transactions for programming DMA bridging
devices that are bus specific rather than platform spe-
cific. Work still needs doing to integrate this need into
the current framework.

Acknowledgements

I would like to thank Grant Grundler and Matthew
Wilcox from the PA-RISC linux porting team for their
help and support transitioning PA-Linux to the generic
device model and subsequently the new DMA API. I
would also like to thank HP for their donation of a PA-
RISC C360 machine and the many people who con-
tributed to the email thread[7] that began all of this.

References

[1] David S. Miller Richard Henderson Jakub Je-
linek Dynamic DMA MappingLinux Kernel 2.5
Documentation/DMA-mapping.txt

[2] James E.J. BottomleyDynamic DMA mapping us-
ing the generic deviceLinux Kernel 2.5
Documentation/DMA-API.txt

[3] Jonathan CorbetDriver Porting: DMA Changes
Linux Weekly News
http://lwn.net/Articles/28092

[4] The PA-RISC linux team
http://www.parisc-linux.org

[5] Patrick MochelThe (New) Linux Kernel Driver
ModelLinux Kernel 2.5
Documentation/driver-model/*.txt

[6] Marc Zyngiersysfs stuff for EISA bus
http://marc.theaimsgroup.com/
?t=103696564400002

[7] James Bottomley[RFC] generic device DMA im-
plementation
http://marc.theaimsgroup.com/
?t=103902433500007

