
USENIX Association

Proceedings of the
5th Annual Linux

Showcase & Conference

Oakland, California, USA
November 5–10, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Managing Distributions from the Software Vendor’s Perspective

James E.J. Bottomley Paul Clements
SteelEye Technology

Columbia, SC
James.Bottomley@SteelEye.com Paul.Clements@SteelEye.com

Abstract

This paper describes one vendor’s quest for a simple distribution model for a software product which
will install on (almost) any Linux distribution. The focus of this paper will primarily be minimising
the vendor production and support costs and secondly improving the product’s install-ability from the
customer perspective. The goal will be to describe a method which achieves a significant lowering of
the development costs associated with deploying on multiple flavours of Linux1

1 Introduction

For Linux to achieve mass acceptance, and hence
world domination, one of the prerequisites is hav-
ing a sufficient application base (how often have
you heard the lament “I would switch to Linux
but for this one XYZ application that I need which
only runs on NT, Solaris...”). One successful ap-
proach to this is emulation used by applications like
wine[2] and dosemu[3]. However, emulators, partic-
ularly those of Microsoft operating systems, tend to
be unable to emulate the entire operating system
(mainly due to secret APIs and undocumented sys-
tem calls). Furthermore incompatibility problems
and inefficiencies with any emulation layer make this
a solution which is feasible, but not optimal. True
world domination will only be achieved when ap-
plication vendors can be persuaded to write native
applications for Linux.

1.1 Project History and Background

LifeKeeper[1] was initially produced by AT&T in
1992 and ran on a proprietary System V like UNIX
OS. The product was bought by SteelEye Technol-
ogy in 1999 with the object of porting it to Linux
(this makes us extremely motivated application ven-
dors).

We began in January 2000 with the aim of mak-

ing LifeKeeper run on RedHat 6.0. During the ini-
tial project, which was scheduled to take about 3
months, RedHat 6.1 was released. “No big deal,
we thought, we’ll just use 6.1 as the base instead.”
The first product was finally released, on RedHat
6.1 in June 2000. Shortly thereafter, the Marketing
Department agreed to go on a road-show tour with
Caldera. “Of course it will work, it’s just Linux”,
they said. “Er...Hang on, let us test it first!”, we
replied. Sure enough, the pristinely rpm[5] packaged
software wouldn’t even install on Caldera (some of
the packages we list as requirements have different
names on Caldera). When we forced it to install,
it wouldn’t start on machine boot up like it was
supposed to (the init system is different). Finally,
when we started it manually, it dumped core and
died. The reason? we have a fixed shared memory
area at 0x7fff0002, but the eServer kernel was com-
piled with the 2GB option meaning the shared li-
braries were actually occupying this area—“It’s just
Linux—Sure!”.

We solved these issues by producing a special
“for demonstration purposes only” package for the
Caldera road-show. This seemed to be leading us
unwittingly in the direction of one package per dis-
tribution. However, with the advent of RedHat 7.0
even the embryonic single package per distribution
strategy was starting to fail: Some of the applica-
tions changed names or plain just wouldn’t run with
the new version of glibc.



This traditional UNIX flavour approach (produce
one package for each distinct distribution3) wasn’t
flying well with our Sales Department either: “I
just want to sell them one CD, I don’t want to
give them the third degree about what flavour of
Linux they’re running—I didn’t even know Linux
had flavours”. And from the engineering perspec-
tive, the alternative of a single package containing
all distributions looks like a release and a Quality
Assurance (QA) nightmare (how do we add a new
distribution quickly to our monolith? do we have
to test on all distributions when we make a change
specific to one?).

Even worse: at the moment the distributions we
support all use the RedHat PackageManager (rpm).
However, there are distributions (like Debian) that
don’t use this. How would we get our packages to
install on these systems?

1.2 Examples of the Differences Among
Linux Distributions

This represents an illustrative rather than a com-
plete list of the differences

1. The Kernel: each distribution vendor rolls up
their own patches, so if you require a spe-
cific patch, it may be in one vendor’s 2.2.14,
but not in another vendor’s until their version
2.2.16.

2. Drivers: some companies that produce
adapter cards (particularly with Fibre Chan-
nel) supply their own Linux drivers, but these
are not part of the standard kernel (although
they may be included in distribution specific
kernels). In order to get the correct and tested
driver for the product, we must either direct
the user to download it from the vendor’s web-
site (and possibly compile it) or supply it our-
selves.

3. Package names may be different (e.g. RedHat
has nfs-utils whereas SuSE has nfsutils.

4. The init subsystem may be different
(e.g. /etc/rc.d/init.d on RedHat but
/etc/init.d on SuSE). (Note that the adop-
tion of the Linux Standard Base will eliminate
this issue.)

5. Device names (e.g. /dev/raw/rawn on Red-
Hat but /dev/rawn on SuSE).

We must abstract each of these features from the
product and construct it in such a way that future
but currently unrecognised differences may also be
handled without necessitating re-delivery of the en-
tire package.

1.3 The Goals

At this point, we tried to find a way out of what had
now become distribution hell by establishing clearly
what our requirements were:

1. Be able to add support for a new distribution
simply and without changing any of the re-
leased packages,

2. only have to run QA on the new distribution
and not have to perform regression on any oth-
ers, and the Marketing one:

3. be able to release on a designated distribution
within 60 days of being told to.

4. minimise the costs associated with deploying
and maintaining our product on the different
distributions.

These goals are deceptive, since the requirement to
be able to release, item 3, morphed into be able to
release without requiring customers to do any up-
grades to their systems, but be tolerant if they had.
Now we have to be able to upgrade some distribu-
tions to the minimum working versions of software
(and kernel) as part of our installation.

2 The Solution

The solution has its origin in the original marketing
statement: “Of course it will work, it’s just Linux”.
In theory, underneath all of the value add and differ-
entiation, the essence of the operating system (the
kernel, the libraries and the core applications) is ef-
fectively all from the same source. Therefore, we
theorised, it should be possible to separate our prod-
uct into two pieces, one large piece which is inde-
pendent of the distribution (called the core) and a



Distribution Enabling Packages

requires

provides

Core Packagessteeleye−lk−4.0.0−1

steeleye−lkCaldera−3.1.3−1 steeleye−lkSuSE−4.0.0−1

requires

provides providesprovides

steeleye−lkPlatform−4.0.0−1 Virtual Packages

requires requires

requires

requires

steeleye−lk−3.1.0−1

steeleye−lkRedHat−3.1.0−1

steeleye−lkPlatform−3.1.0−1

OS PackagesCaldera Specific Packages SuSE Specific PackagesRed Hat Specific Packages

Figure 1: Distribution Enabling Package Scheme

much smaller one containing the distribution depen-
dent components. Then, to support a new distribu-
tion, we would be able to produce a new distribu-
tion dependent component and deliver it along with
our unaltered core package. Because the core and
all of the other distribution dependent components
are unchanged, to release on a new distribution we
would only need to develop the distribution depen-
dent component and then QA the whole thing on
the one new distribution.

2.1 Implementing the Solution

The most appealing implementation would be to use
the virtual package feature of rpm, so we have a sin-
gle package for each distribution containing the dis-
tribution dependent components for that distribu-
tion. These distribution packages would all provide
the same virtual package, which the distribution in-
dependent packages would require (see Figure 1).
Unfortunately, rpm is not quite flexible enough to
be used in exactly this way.

The basic issues are:

• Inability to modify one package from within
the installation of another (prevents the in-
stallation of required upgrades and patches).

• No interaction allowed (it is unacceptable for
us just to modify the installed operating sys-
tem without explaining to a user what we want
to do and asking permission to proceed).

In the end, we decided to create a setup script for
each distribution to handle the initial setup tasks:

1. Recognise the distribution or exit 1 (all other
error exits start from 2 up).

2. Analyse the configuration and compute the
upgrades required.

3. Inform the user what needs to be done and
request permission to proceed.

4. Only if the user permits us to install the
required upgrades, install the distribution
dependent component providing the virtual
package.



Using step 1, we can now place a collection of these
on a CD in individual directories and have a top
level setup script which invokes each of the subdi-
rectory setups in turn until it finds one that doesn’t
exit 1. Adding support for a new Linux distribution
consists of simply adding an additional subdirectory,
including the necessary setup script and distribution
rpm package, to the CD.

One of the final benefits to this approach is that we
can also bundle software that isn’t distributed with
the target OS on the CD. This came in very handy
for us since our GUI is written in Java, but in 2000
only Caldera had a bundled JVM.

Finally, it is necessary to adhere to a set of rules that
ensure general portability of the core components.
The essentials of these are:

1. Never use absolute paths in scripts. Always
use commands by their non-path qualified
name so that the PATH variable may be up-
dated per distribution to find the correct com-
mand.

2. In compiled programs, always use POSIX
APIs found in the standard glibc if possi-
ble rather than non-standard APIs which are
found in libraries not present on all distribu-
tions.

3. Never “hardcode” fixed parameters. Always
load them from some type of defaults file so
they may be modified in the field (or by a dis-
tribution enabling script) if necessary.

4. Resist the “latest greatest” craze. Beware of
trying to code an application for the latest
whiz bang feature since most distributions will
pick this up more tardily than you anticipate.
Unless absolutely essential (and you can work
out how to deliver the functionality yourself)
always code to APIs which exist on distribu-
tions today.

2.2 Distribution Specific Paths

Some utilities can have different names as well
as non-standard locations for some daemons (e.g.,
nfsd vs rpc.nfsd). We fix this by putting the full
absolute paths in the code but always put these
paths through a mapping function which is fed from

a distribution dependent map file. By default the
mapper is the identity, but if it finds an entry in the
map file, it will return the distribution specific abso-
lute name. At the application design phase, we must
identify all utilities that are likely to vary between
distributions and abstract them in this fashion.

2.3 Abstracting the Init System

Since LifeKeeper protects applications, which may
themselves have a presence in the init system, we
must be able to manipulate other applications’ init
parameters at a basic level. We find there are four
functions we need to abstract:

• initstart, initstop, initenable and
initdisable.

For shell scripts, we make the distribution
specific component provide the implementa-
tion (as separately callable commands). For
example initstop apache is implemented as
/etc/rc.d/init.d/httpd stop on RedHat, but
as /etc/init.d/apache stop on SuSE. Note
that even the service name has to be translated.
As another example, initdisable apache be-
comes /sbin/chkconfig httpd off on RedHat
but /sbin/insserv -r apache on SuSE.

2.4 Packaging the Solution

The packaging for the product consists of an Instal-
lation/Support CD and a Core Product CD.

The Installation/Support CD contains the afore-
mentioned distribution setup scripts and packages,
as well as any supporting packages and patches that
may need to be installed on the system prior to core
product installation.

The packaging dependencies are shown in figure 1.
The diagram illustrates the OS dependent pack-
ages for three different operating sytems (RedHat,
Caldera and SuSE) and also shows how we can
choose to revoke or maintain backward compatibil-
ity as we revise the distribution dependent compo-
nents: the SuSE package provides the virtual pack-
age required by both the 3.01 and 4.0 versions of
our product. This use of multiple virtual packages



provides us with extremely fine grained tuning of
our operating system support.

Additionally, the distribution rpm packages them-
selves have requirements on essential system pack-
ages. The rpms will fail to install if the customer’s
system does not contain these packages. The cus-
tomer must then install the necessary packages be-
fore proceeding.

Once the Installation/Support CD has been success-
fully installed, it can be assumed that the system is
prepared to run the core product. The core product
rpm packages can then be installed from the Core
Product CD.

3 Comparison with the Linux Stan-
dard Base

The Linux Standard Base[6] (LSB) is a set of sys-
tem and application requirements. It defines a com-
mon interface between the operating system and ap-
plications with the goal to “increase compatibility
among Linux distributions and enable software ap-
plications to run on any compliant Linux system.”
LifeKeeper’s distribution enabling scheme also at-
tempts to cope with the differences in the system in-
terfaces of the various Linux distributions. However,
since we cannot force standards on the distribution
vendors, our distribution enabling scheme contains
a compatibility layer that provides the (currently
lacking) common interface between our application
(and those under LifeKeeper’s control) and the un-
derlying operating systems. As the Linux Standard
Base increases in scope and is increasingly adopted
by Linux distribution vendors, our distribution en-
abling layer should diminish proportionally. Differ-
ences in system interfaces will either be eliminated
or, at the very least, the compatibility layer (which,
at present, must be contained within the applica-
tions themselves) will be pushed into the underlying
operating system.

Adoption of the LSB is one very important step to-
ward reducing the growing fragmentation among the
Linux distributions. If this fragmentation is not ad-
dressed, Linux may succumb to the same fate that
commercial Unix did. Therefore, adherence to the
LSB and other standards (such as POSIX), while
burdensome to software vendors, is a necessary evil.
Without a common system interface, application

vendors must bear the increased burden of scoping
out and dealing with differences in underlying op-
erating systems. This results in increased time to
market and increased cost for application vendors,
and may inhibit the porting of an application alto-
gether.

While the LSB, in its current form, does address
many of the needs of application vendors, there are
also some areas where the goals of the LSB and our
distribution enabling scheme diverge.

3.1 Areas in which the Linux Standard
Base Benefits Us

The following items are examples of areas in which
adoption of the LSB would allow for the elimination
of various compatibility layers that are currently
necessary in our product.

• Filesystem Hierarchy Standard (FHS) - Stan-
dard filesystem locations would eliminate the
need for pathname abstraction mechanisms.

• Standardisation of Init Systems - Standard
run level definitions, as well as standard
startup script locations, actions, and expected
behaviours would reduce the need for an init
abstraction layer.

• Standardised Packaging Mechanism - The
LSB recommends that the Red Hat Package
Manager (rpm) be available. This would allow
application vendors to provide a single pack-
age format that would install on any Linux
distribution.

In addition to the above direct benefits, there are
also a few indirect benefits of the LSB.

Dealing with bugs and feature changes in external
software is generally a challenging task. (With open
source, the detection and solution of external bugs
is less difficult, but still a problem, nonetheless).
Adherence to the LSB ensures that some degree of
backward compatibility is maintained for those in-
terfaces defined by the standard. Also, the test suite
for the Linux Standard Base is an additional tool to
help reduce the introduction of bugs (and other in-
compatibilities) to system interfaces.



3.2 Areas that the Linux Standard Base
Does Not Currently Address

Because the LSB does not (yet) address several
areas of difference among the Linux distributions,
the task of designing and implementing an LSB-
Compliant application is still a difficult one. The
following items are some examples of areas that, if
added to the LSB specification, would hopefully ease
the burden on application vendors:

• Consistent Package Naming and Versioning
Scheme - This would allow package depen-
dencies to work correctly across distribu-
tions (e.g., the nfsutils package on SuSE is
nfs-utils on other distributions).

• Internationalisation and Localisation - While
there are several standards that define consis-
tent library interfaces for localisation and in-
ternationalisation, each distribution has a dif-
ferent location and method for specifying lo-
calisation policies.

• System Administration - Each distribution
has its own set of system configuration
files and directories (e.g., /etc/config.d,
/etc/sysconfig, /etc/rc.config). There
are also distribution specific tools for
modifying these files (e.g., turbo*config,
SuSEconfig, linuxconf). These differences
place an undue burden on vendors who wish to
release their software on several distributions,
since programmers, testers, and support engi-
neers must learn how to correctly administer
each distribution using system administration
tools that are unique to that distribution.

3.3 Problem Areas Outside the Scope of
Standards

In addition to those areas that can be (or are al-
ready) addressed in various standards, there are
some areas in which the application vendor has the
responsibility for ensuring that compatibility with
the system interface has been maintained. In par-
ticular, dealing with version (and the accompanying
feature) changes in system software is an ongoing
task.

Some version differences that must be dealt with in
Linux are

• kernel versions 2.2 and 2.4 - Between major
releases of the kernel, several interfaces have
changed and several subsystems have been (at
least) partially rewritten. This requires both
application software changes and updates to
existing kernel drivers and patches.

• Linux distribution versions (for instance, Red
Hat 6.2 and Red Hat 7.1) - There are different
installation and system administration utili-
ties, and different default system service and
security settings, which must be learned.

• glibc versions 2.1 and 2.2 - Because backward
compatibility has been maintained, there is
not much change required in our product to
deal with these two library versions (apart
from upgrading “known bad” versions of the
libraries).

4 Analysis and Conclusion

4.1 The Customer Experience

Customers who purchased the initial product (which
was specific to RedHat 6.1 only and was available
on one CD) did grumble about having a 2 CD set
when they upgraded to the next release of the prod-
uct. However, those who had installed the prod-
uct themselves (rather than having us send out a
Sales Engineer to do it) thought that the 2 CD
inconvenience was outweighed by having all neces-
sary upgrades and required packages available on
the CD. Additionally, they thought having a script
that could work out the missing packages and de-
pendencies and install them in the correct order was
an extremely valuable function.

Later customers have made no comment at all (ei-
ther good or bad) on the 2 CD distribution enabling
system. Perhaps this can be considered to be praise
for a utility designed to facilitate installation—that
it performs its job so quietly and efficiently that
users don’t really notice it.



4.2 What we got Right

The separation of the core product and the distribu-
tion setup and packaging onto separate media has
afforded us greater flexibility in our product release
cycle. We are able to introduce support for new
Linux distributions quickly and asynchronously to
the core product release schedule. In addition, mod-
ifications to the core product due to distribution
differences are rare.

As an example, we recently added TurboLinux 6.5
to our list of supported operating systems. Since
TurboLinux is derived from the RedHat distribu-
tion, most of the distribution enabling was pretty
much plain sailing. The only slight problem was
caused by our NFS Application Recovery Kit (used
to provide High Availability NFS in a cluster). It
turns out that on TurboLinux the RPC portmap-
per isn’t started by default, so the NFS recovery
kit was unable to start the NFS daemons. To get
around this problem, the list of required daemons
was abstracted (which required modifications to the
kit) and portmap was added to the list of required
daemons.

4.3 What We’ll Do Better Next Time

In drawing the dividing line between the distribu-
tion independent core and the distribution depen-
dent components, we erred on the side of including
too much in the core package. Since LifeKeeper es-
sentially provides a High Availability harness for an
operating system and its applications, it is much
more closely bound to the way the applications it
is protecting are bundled with the operating sys-
tem than a normal program. For this reason, the
lack of abstraction of our application control inter-
faces in the core product has caused considerable
problems for us. Modifications to our Application
Recovery Kits (the pieces that control and moni-
tor applications under LifeKeeper protection) due to
differences between Linux distributions is still fairly
common.

In the initial release, the init system abstractions de-
scribed in section 2.3 were not in place. This caused
us quite a bit of anguish over daemons which are
very difficult to start and stop except by using the
init scripts. We solved this problem on an interim
basis by using our file mapping functions described

in section 2.2 to translate the location of the init
scripts and just assumed they could be called as
script start | stop in all distributions. (With
the adoption of the Linux Standard Base, we will
no longer have to assume that the start and stop
actions are valid, as they will be required for all init
scripts).

4.4 Suggested Enhancements to rpm

in section 2.1 we outlined the problems trying to
support different distributions with rpm. In this sec-
tion we outline a list of enhancements that could be
made to rpm to improve its utility in handling mul-
tiple distributions.

• Dynamic file to package mapping. It would
be extremely useful to have rpm install certain
distribution specific files to an innocuous lo-
cation (e.g. /tmp) and later relocate or delete
them as appropriate in the %post section. The
remaining files should show up in the rpm in-
ventory in their new location.

• Dynamic dependencies. Since distribution de-
pendencies are not always known at package
build time, it would be useful to be able to
modify them in a special section of the %pre
script and have the system act on all the de-
pendencies including the newly added ones. In
addition, the ability to specify conditional or
boolean logic in package dependencies would
be useful. For example, a package could de-
pend on one package name and version on one
distribution, while depending on a different
package on another distribution. Or perhaps
a package could depend on one of two possible
required packages.

• Scripted Interaction. Could do with an ac-
ceptable input method (which would be stan-
dard for the graphical install tools as well)
which would allow the user to enter responses
to a series of questions. The responses should
be capable of taking default input from a file
(so that the install may be customised for non-
interactive non-default installs).

• Multiple file ownership. It would be helpful if
the rpm model permitted more than one pack-
age to ‘own’ a file. Often we get into the sit-
uation where we need to deliver a particular



file, which may also be delivered by another,
optional, package.

• Ability to install missing dependencies. In ad-
dition to having rpm list all the required de-
pendencies, it would be useful to be able to
have it install the missing ones from a pool of
available package files.

4.5 Future Enhancements to Distribu-
tion Enabling

The current implementation is pretty closely tied to
rpm. However, there are a number of Linux distribu-
tions which don’t use rpm to manage their packages.

The classic example of this is Debian, which uses
its own (and completely different) package manager.
The best way to support this is probably to use the
standard distribution enabling setup and provide a
debian package which has all the debian dependen-
cies as package requirements. However, as part of
the installation of this package, we would also install
a skeleton rpm system which provides the distribu-
tion enabling virtual package. Then installation of
the distribution independent application packages
via rpm would be able to proceed properly, even on
the Debian platform.

4.6 Conclusion

Using the Distribution Enabling scheme, the costs
associated with releasing software on multiple Linux
distributions can be managed so as to make them
much less than the costs of supporting a correspond-
ing set of releases for different flavours of UNIX.
Unfortunately, this is still higher than the cost of
targeting a single OS. However, we hope that this
scheme will persuade the software vendors already
considering a Linux release that the costs may not
be as great as they initially anticipated.

4.7 Postscript

Although the product itself is proprietary, the dis-
tribution enabling model described herein is primar-
ily script based and readers wishing to explore de-
tails of the implementation more fully are invited to

download a demonstration copy of LifeKeeper from
http://www.steeleye.com/.

Notes

1Linux is a trademark of Linus Torvalds. LifeKeeper is a
trademark of SteelEye Technology, Inc. All other trademarks
are the property of their respective owners.

2The shared memory segment must be fixed at the same
virtual address for all LifeKeeper processes (since it contains
internal pointer references) but that address may be varied
globally. Therefore, we make all processes read the location
of the shared memory segment from a file before start up and
alter the value (to 0x5fff000) for Caldera.

3This is primarily accepted wisdom, perhaps the best re-
cent example is from the US DOJ vs Microsoft court case[4]
where Microsoft argues ...The uniformity of Windows (in
contrast to the many different flavors of the UNIX operating
system) is one of the primary benefits of the operating sys-
tem, leading to the availability of a vast range of compatible
hardware and software products

References

[1] SteelEye Technology, Inc. LifeKeeper for
Linux The steeleye website is currently being
redone—will provide the URL when it is finally
fixed

[2] Jeremy White, Marcus Meissner, Alexan-
dre Julliard The Wine Project, An Open
Source Implementation of the Windows API
Comdex 99 http://www.winehq.org/Talks
/comdex99/img0.htm

[3] http://www.dosemu.org/

[4] Microsoft Corporation, Inc. Microsoft’s
Supplemental Memorandum in Support of
MSJ. Re: DOJ v. Microsoft, Case No.
98-1232, 1233. Date: September 14, 1998.
http://www.techlawjournal.com/courts
/dojvmsft2/80914msft.htm

[5] Edward C. Bailey Maximum RPM: Taking the
Red Hat Package Manager to the Limit 17
February 1997

[6] The Linux Standard Base
http://www.linuxbase.org/


